Class Introduction

Social Computing
Social Computing Course

• **Location and Time**
 – HU 134 T-Th 10:15-11:35 am

• **Instructor:**
 – Prof. Tomek Strzalkowski

• **Class Website**

• **Class wiki**
Social Computing Course

• **Contact Information**
 – tomek@albany.edu

• **Assistant: Gregorios Katsios**
 – gkatsios@albany.edu
Contact

• **Office Hours: Social Science**
 – TS: 12 noon- 2 pm Tuesdays (SS-262)
 – GK: TBD (SS-261)
 • By appointment only

• Preferred contact method: Email
• Or in person during office hours
• If you need to meet at any other time, please make an appointment via email first!
What is it all about?

• Can a computer figure out who is a leader of a group of people from their conversation?
• Can a computer detect when a person has changed their mind about something even when they would not openly admit it?
• What can a computer find out about the real person behind an avatar their in an online game?
• Can we build an artificial agent that would hold its own in an online conversation?
• Can an artificial agent influence a person’s behavior?
What will you learn?

• Introduction to the field of social computing
• Become familiar with the state-of-the-art research in big data and social computing
• Achieve a comfortable level of thinking about concepts like human behavior and attitudes and modeling them in computational algorithms
Why is it relevant now?

• Big data and Data Science are the buzz words of today
• And so are Deep Learning and Deep AI
• But, need to have a careful approach towards data
• And also towards what machines actually can do
Reading Materials

• No textbook
• No exams

• Lecture slides
• Assigned readings
 – Papers that touch upon and expand on the topics covered in lectures
Course Grading Policy

• 20% Reading responses
• 20% Presentation and discussion lead
• 20% Class participation
• 30% Homeworks
• 10% In-class mini-quizzes
Reading Responses (20%)

• By 11:59 pm on Thursday, students will be required to send reading responses to the instructor for the paper assigned in the prior week.

• A template for filling out response will be provided.

• Responses will be evaluated on the quality of insights, but are informal and will not be evaluated for grammar or formal writing style.
Presentation/Discussion Lead (20%)

- Each student will be assigned to one of the readings after the first day of class.
- That student will prepare slides on the reading and lead an in-class discussion on the reading assignment.
- Slides need to be sent to TA and instructor by 11:59 pm on Monday before class.
Presentation/Discussion Lead (20%)

• For the week you present and lead a discussion, you do not need to complete a reading response.

• The presentation should be organized into the sections.
Presentation content

• What is the main problem or issue that the authors are addressing?
• Provide an overview of the authors’ approach/argument and conclusions.
 – This is the core content
• What are the main strengths and/or weaknesses of the approach?
• Provide a list of questions regarding the paper for discussion during class.
Here is a possible structure

• Motivation & Data
• Problem definition/scope
• Previous efforts
• Authors’ approach
• Results as reported
• Contribution vs. previous efforts
• Questions for discussion
Class Participation (20%)

• Class participation will be evaluated on the basis of student involvement during discussions and in lectures
• Being absent from class more than 2 times without explanation will result in loss of class participation grade
Homeworks (30%)

• Class project structured as three homework assignments
• Approximately 1 month to complete each assignment
• Will require programming
 – Can choose language, Java or Python preferred
• Each subsequent homework builds upon previous one
Homeworks (30%)

• Sample data and code for each assignment will be provided
Quizzes (10%)

• Five mini-quizzes spread through the semester
• Check course schedule for exact dates
• Multiple choice questions
• To be answered in class
• May require some basic calculation
• 20-30 minutes in duration
Late Submission Policy

• Submissions will not be accepted late, no exceptions.

• Partial credit will be given for submissions that are turned in on time, but incomplete; so turn in whatever you have by the deadline.
Academic Integrity

• Cheating/copying/plagiarism of any kind will result in loss of grade for all parties involved.
Course schedule

Assigned Reading: Paper 1

CRITICAL QUESTIONS FOR BIG DATA
By danah boyd & Kate Crawford

• Responses due 11:59 pm, January 31st, 2019
• Slides due 11:59 pm, February 4th, 2019
Signing up for presentation slots

• Send email to: tomek@albany.edu
• Select exactly 3 dates from list of presentation dates
• Order them in your order of preference
• First-come first-served basis